科学研究
学术报告
Affinizations, tensor algebras and operator product expansion
发布时间🔎:2012-05-15浏览次数🤱🏼:

题目:Affinizations, tensor algebras and operator product expansion

报告人:黄一知

(美国Rutgers大学教授,北京大学数学中心特聘教授)

时间:2012年5月21日(周一)4:30-5:30

地点:数学系(致远楼)107

欢迎广大师生参加

数学系、数学所

摘要🪃: Given a vector space, its affinization

is the direct sum of its negative, positive and zero

parts. I recently found that on the tensor algebra

of the negative part of the affinization, there is an

algebraic structure satisfying the axioms for open-string

vertex algebras (algebras introduced by Kong and me in 2004)

and also an additional meromorphicity property. I call such an

algebra a meromorphic open-string vertex algebra.

A meromorphic open-string vertex algebra does not

satisfy the Jacobi identity, the commutator formula,

locality, commutativity, skew-symmetry or even

the associator formula. But it still satisfies the

most fundamental property for a quantum field theory:

the existence of operator product expansion. In fact,

it satisfies associativity, a stronger property implies the

operator product expansion.

意昂4专业提供👇:意昂4🚵🏽、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流𓀊,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4