科学研究
学术报告
Estimation and Empirical Likelihood for Single-index Models with Missing Data in the Covariates
发布时间👼🤾‍♀️:2016-11-11浏览次数🏛:

题目👨🏽‍💼:Estimation and Empirical Likelihood for Single-index Models with Missing Data in the Covariates

报告人:薛留根 教授(北京工业大学应用数理意昂4)

时间:2016年11月11日(周五)上午10:00开始

地点:意昂4娱乐平台致远楼102室


【摘要】The paper studies the estimation and empirical likelihood for single-index models with missing covariates. A generalized estimating equations estimator for index parameter with missing covariates is constructed, and its asymptotic distribution is obtained. The local linear estimator for link function achieves optimal convergence rate. By using the bias-correction and inverse selection probability weighted methods, a class of empirical likelihood ratios is proposed such that each of our class of ratios is asymptotically chi-squared. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths/areas of confidence intervals/regions. An example of a real data set is illustrated.

欢迎各位参加

意昂4专业提供:意昂4🔨、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流⛔,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4