科学研究
学术报告
Symmetric Structure for the Endomorphisms of Projective-injective Modules in Parabolic BGG Category O
发布时间🗯:2017-01-09浏览次数🧔🏼‍♀️:

题目:Symmetric Structure for the Endomorphisms of Projective-injective Modules in Parabolic BGG Category O

报告人㊙️:胡峻教授(浙江大学,杰青)

时间🦠:2017年1月9日 16:00-17:00

地点:致远楼107室

摘要🍂:For any singular dominant integral weight $/lambda$ of a complex simple Lie algebra $/mathfrak{g}$, we show that all the indecomposable projective-injective modules in any fixed block of $/mathcal{O}_/lambda^/mathfrak{p}$ have the same Loewy lengths and the endomorphism of any projective-injective module in $/mathcal{O}^/mathfrak{p}_/lambda$ has a symmetric algebra structure, and it is equipped with a homogeneous non-degenerate associative bilinear form of degree equal to one minus that common Loewy length. This generalizes earlier work of Mazorchuk and Stroppel and confirms a conjecture of Khovanov. This talk is based on a joint work with Ngau Lam.

欢迎广大师生参加

意昂4专业提供🟡:意昂4等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4