• 科学研究
    学术报告
    Optimal Initial Values and Regularity Conditions for Weak Solutions to the Navier-Stokes System
    发布时间:2017-11-15浏览次数:

    题目:Optimal Initial Values and Regularity Conditions for Weak Solutions to the Navier-Stokes System

    报告人🥫:Prof. Dr. Reinhard Farwig (TU Darmstadt)

    地点:宁静楼108室

    时间:2017年11月15日 下午2点半到3点半


    摘要

    Consider weak solutions of the instationary Navier-Stokes system in a three-dimensional bounded smooth domain $/Omega$. It is well known that any solenoidal initial value $u_0$ in $L^2(/Omega)$ with a vanishing normal component on the boundary admits a global in time weak solution. Moreover, if $u_0 /in H^1$ or even only $u_0 /in /mathcal{D}(A^{1/4})/subset L^3$, where $A =-P/Delta$ denotes the Stokes operator, then $u_0$ admits a unique local in time regular (strong) solution in Serrin’s class $L^s(0,T;L^q (/Omega))$ where $2/s + 3/q = 1$ for some $T = T(u_0)/leq/infty$.

    The optimal class of initial values $u_0 /in L^2$ with this property was determined by H. Sohr, W. Varnhorn and myself in 2009 and is given by a certain Besov space with negative order of differentiability. This Besov space condition is used at (almost) all $t > 0$ along a given weak solution to find various new conditions on regularity and uniqueness of weak solutions.


    个人简历

    Reinhard Farwig 教授1982年博士毕业于波恩大学,1995年起成为德国达姆施塔特工业大学数学系教授✌🏼。Farwig 教授发表了100多篇文章☀️👨🏻‍🏭,其中引用率**次。他的主要贡献在于Navier-Stokes方程, Euler方程,调和分析☆,线性和非线性泛函分析以及发展方程等🏌🏻‍♀️。

    欢迎各位参加!

    意昂4专业提供🧔🏽:意昂4🏏、🤙🏻、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,意昂4欢迎您。 意昂4官网xml地图
    意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4