科学研究
学术报告
High-Dimensional Gaussian Graphical Model for Network-Linked Data
发布时间:2018-05-12浏览次数:

题目:High-Dimensional Gaussian Graphical Model for Network-Linked Data

报告人👋:Prof. Zhu Ji (美国密歇根大学)

地点:致远楼108室

时间:2018年5月12日上午9:45开始

摘要:Graphical models are commonly used in representing conditional independence between random variables, and learning the conditional independence structure from data has attracted much attention in recent years. However, almost all commonly used graph learning methods rely on the assumption that the observations share the same mean vector. In this paper, we extend the Gaussian graphical model to the setting where the observations are connected by a network and propose a model that allows the mean vectors for different observations to be different. We have developed an efficient estimation method for the model and demonstrated the effectiveness of the proposed method using simulation studies. Further, we prove that under the assumption of "network cohesion", the proposed method can estimate both the inverse covariance matrix and the corresponding graph structure accurately. We have also applied the proposed method to a dataset consisting of statisticians' coauthorship network to learn the statistical term dependency based on the authors' publications and obtained meaningful results. This is joint work with Tianxi Li, Cheng Qian and Elizaveta Levina.

欢迎广大师生前来参加

意昂4专业提供🎒:意昂4等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4