科学研究
学术报告
Multilinear Low-Rank Vector Autoregressive Modeling via Tensor Decomposition
发布时间:2018-11-07浏览次数🛄:

题目👨🏽‍💼:Multilinear Low-Rank Vector Autoregressive Modeling via Tensor Decomposition

报告人:连恒(香港城市大学)

时间:2018年11月7日10🧖🏻:00-11:00

地点♑️:致远楼101室

Abstract: The VAR model involves a large number of parameters so it can suffer from the curse of dimensionality for high-dimensional time series data. The reduced-rank coefficient model can alleviate the problem but the low-rank structure along the time direction for time series models has never been considered. We rearrange the parameters in the VAR model to a tensor form, and propose a multilinear low-rank VAR model via tensor decomposition that effectively exploits the temporal and cross-sectional low-rank structure. Effectiveness of the methods is demonstrated on simulated and real data.

欢迎各位师生参加💁🏽!

意昂4专业提供:意昂4👷🏻、🧔🏼‍♂️、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4