科学研究
学术报告
Reducing Subspaces of Tensor Products of Operators and Representation of Permutation Group
发布时间:2019-06-17浏览次数:

题目💂‍♀️:Reducing Subspaces of Tensor Products of Operators and Representation of Permutation Group

报告人🦶🏽:Prof . Caixing Gu(California Polytechnic State University)

地点:致远楼101室

时间🪯:2019年6月17日 9:00-10:00

摘要🏊‍♂️:For a complex Hilbert space H, the d-copy tensor product of H is denoted by H^⊗d. For a class of tensor products of operators on H^⊗d which are invariant under a subgroup of the permutation group of d element, we identify their reducing subspaces. These reducing subspaces are formally (or implicitly) known through Schur-Weyl duality in the group representation theory where finite dimensional vectors spaces and the invertible similarity are general used. We state these results in the operator theoretic framework which deals with infinite dimensional complex Hilbert spaces and uses the unitary similarity. We explicitly display some of these reducing subspaces. Most importantly we initiate the investigation of the question for which operator these reducing subspaces are minimal.

欢迎各位参加📄!

意昂4专业提供👩‍🏫:意昂4🔃、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流➞,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4