科学研究
学术报告
Ymmetric Minimal Surfaces in S^3 as Conformally-Constrained Willmore Minimizers in S^n
发布时间:2019-07-16浏览次数:

题目:Ymmetric Minimal Surfaces in S^3 as Conformally-Constrained Willmore Minimizers in S^n

报告人💁🏼‍♀️✯:王鹏 教授 (福建师范大学)

地点🈁:致远楼101室

时间🪞:2019年07月16日 10:00-11:00

摘要🪠:The Willmore conjecture states that the Clifford torus minimizes uniquely the Willmore energy /int (H^2+1) dM among all tori in S^3, which is solved recently by Marques and Neves in 2012. For higher genus surfaces, it was conjectured by Kusner that the Lawson minimal surface, /xi_{m,1}: M-->S^3, minimizes uniquely among all genus m surfaces in S^n. The conjecture reduces to the Willmore conjecture for tori if m=1, since /xi_{1,1} is the Clifford torus. In this talk, we will prove this conjecture under the assumption that the (conformal) surfaces in S^n have the same conformal structure as /xi_{m,1}.

欢迎参加!

意昂4专业提供🐉🌱:意昂4🧇、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4