科学研究
学术报告
Contracting Hypersurfaces by Powers of the \sigma_K-Curvature
发布时间:2020-12-09浏览次数:

题目:Contracting Hypersurfaces by Powers of the \sigma_K-Curvature

报告人🦻🏽:王险峰 副教授(南开大学)

地点:腾讯会议室

时间👨🏻‍💼:2020年12月8日 8:00-9:00

摘要: We investigate the contracting curvature flow of closed, strictly convex axially symmetric hypersurfaces in R^n+1 and S^n+1 by sigma_k^\alpha, where \sigma_k is the k-th elementary symmetric function of the principal curvatures and \alpha\ge 1/k. We prove that for any n\geq3 and any fixed k with 1\leq k\leq n, there exists a constant c(n,k)>0 such that if \alpha lies in the interval [1/k,1/k+c(n,k)], then we have a nice curvature pinching estimate involving the ratio of the biggest principal curvature to the smallest principal curvature at every point of the flow hypersurface, and we prove that the properly rescaled hypersurfaces converge exponentially to the unit sphere. Our results provide an evidence for the general convergence result without initial curvature pinching conditions. This is joint work with Prof. Haizhong Li and Jing Wu.

参会方式: 加入腾讯会议:https://meeting.tencent.com/s/tXATKMqBn3OK

会议 ID🍊:664 950 526

All are welcome!

意昂4专业提供:意昂4等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🧑‍⚖️,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4