科学研究
学术报告
Inverse Mean Curvature Flow for Space-Like Graphic Hypersurfaces with Boundary in Lorentz-Minkowski Space R_1^(n+1)
发布时间🫴🏽👂:2021-07-06浏览次数:

题目:Inverse Mean Curvature Flow for Space-Like Graphic Hypersurfaces with Boundary in Lorentz-Minkowski Space R_1^(n+1)

报告人:毛井 教授(湖北大学) 

地点🍲🙍🏻‍♂️:腾讯会议室

时间:2021年7月6日 10:00-11:00

摘要♗:In this talk, we introduce the evolution of space-like graphic hypersurfaces defined over a convex piece of hyperbolic plane〖 H〗^n (1), of center at origin and radius 1, in the (n+1)-dimensional Lorentz-Minkowski space R_1^(n+1)  along the inverse mean curvature flow with the vanishing Neumann boundary condition, and show that this flow exists for all the time. 

Moreover, we can also show that, after suitable rescaling, the evolving space-like graphic hypersurfaces converge smoothly to a piece of hyperbolic plane of center at origin and prescribed radius, which actually corresponds to a constant function defined over the piece of H^n (1), as time tends to infinity. This talk is based on a joint work with Dr. Ya Gao.

参会方式: 加入腾讯会议

https://meeting.tencent.com/s/rlblboyuqLXS

会议 ID:245 647 085

All are welcome!


意昂4专业提供👩🏻‍🦯‍➡️:意昂4🏋🏼、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🪸,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4